

EITEL-MCCULLOUGH, INC.

2X3000F

HIGH-VACUUM RECTIFIER

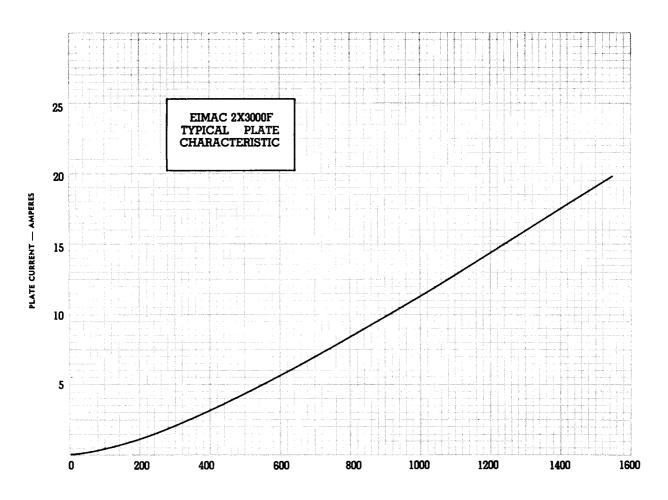
The Eimac 2X3000F is a high-vacuum, forced-air cooled, external-anode diode intended for use in high-power rectifier units whenever high peak-inverse voltages, extreme ambient temperatures, high operating frequency, or the production of high-frequency transients would prevent the use of mercury-vapor or gas-filled rectifier tubes.

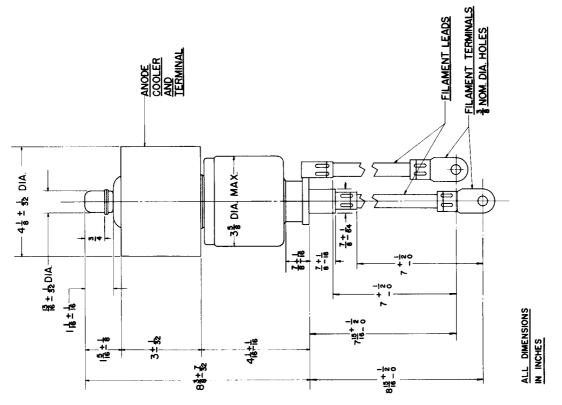
CHAPACTERISTICS

CHARACIERISTICS													
ELECTRICAL													
Filament:	Thoriated Tu										The same		
	Voltage -	-	-	-	-	-	-	7.5	volts				
	Current -	-	-	-	-	-	-	51 8	amperes				
MECHANICA													
Operating Position			-	-	-	Verti	cal, k	oase dov	wn or up				
Maximum C	Operating Temp	perature	s:										
	Glass-to-Me			-	-	-	-	-	175° C			2x3000F	
	Anode Core	-	-	-	-	-	-	-	175° C				
Net Weight		_	-	-	-	-	-	5.7	pounds				
Shipping We	eight (Approxin	nate)	-	-	-	-	-	17	pounds			• •	
MAXIMUM R	RATINGS												
PEAK INVE	ERSE PLATE V	/OLTAG	E	-	-	-	-	-	-	- 25	,000 MAX.	VOLTS	
PLATE DIS	SIPATION	-	-	-	-	-	-	-	-	- 3	,000 MAX.	WATTS	
DC PLATE	CURRENT	-	-	-	-	-	-	-	-	-		AMPERES	
PEAK PLA	TE CURRENT	-	-	-	-	-	-	-	-	-	-	AMPERES	
				Maximum				Apj	prox.		Maximur	n	
TYPICAL POWER-SUPPLY			AC Input				DC Output		DC Output				
CAPABILITIES*				Voltage				Voltage		Current			
Circuit				(volts rms)				(volts)		(amps)			
Single-Phase, Full-Wave (2 tubes)				1	17,700 total			8,000		6.0			
Single-Phase, Bridge (4 tubes)				1	17,700 total			16,000		6.0			
Three-Phase, Full-Wave (6 tubes)					10,200 per leg				24,000		9.0		
*Choke-input	filter with L e	qual to	or grea	ater tha	an twic	e "criti	cal";	zero c	ircuit los	s as	sumed.		

COOLING

Sufficient forced air cooling must be provided to maintain seal and anode core temperature at 175°C or below. Air-flow must be started when filament power is applied and it is advisable to continue air-cooling for two minutes after all voltages are removed.


The table below lists minimum air-flow requirements to maintain tube temperatures below 175°C with air flowing in both the base-to-anode and anode-to-base directions. This tabulation presumes air at 40°C and sea level. A separate supply of approximately six cubic feet per minute, directed into the filament structure is also required to maintain rated filament seal temperatures. This is best accomplished using a small diameter insulating tubing directed into the stem, between the filament seals.


	MINIMUM COOLING AIR-FLOW REQUIREMENTS								
	BASE-TO	-ANODE FLOW	ANODE-TO-BASE FLOW						
Plate Dissipation (Watts)	AIR-FLOW (CFM)	PRESSURE DROP (inches of water)	AIR-FLOW (CFM)	PRESSURE DROP (inches of water)					
1000 2000 3000	15 45 95	0.1 0.4 1.4	25 75 155	0.2 1.2 4.5					

Note: An extra 375 watts have been added to these plate dissipation figures in preparing this tabulation, to compensate for filament dissipation.

For operation at high altitudes or higher ambient temperatures, these quantities should be increased. In all cases it is suggested that actual temperatures be measured to insure adequate cooling.

